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Abstract 

In this paper, the free vibration behaviour of bi-dimensional functionally graded (BDFG) microbeams 

under arbitrary boundary conditions (BCs) is studied. Based on the frame work of the modified couple 

stress theory and Hamiltonôs principle, governing equations of motion are developed for the BDFG 

microbeams using a quasi-3D theory. The formula then can be reduced to a higher-order beam theory 

(HOBT) of conventional functionally graded (FG) microbeams with the material properties varying along 

the thickness direction only. Two types of BDFG microbeams with different patterns of material volume 

distribution are considered. The material properties used in this study are assumed to vary exponentially 

along both longitudinal and thickness directions of microbeams. Based on the state-space concept, the 

governing equations are solved for natural frequencies and vibration mode shapes of microbeams under 

various BCs. The effects of material distribution, geometric parameters and BCs are also investigated to 

examine the size-dependent behaviour of BDFG microbeams. 
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1. Introduction 

Functionally graded materials (FGMs) are a class of composite structures formed by changing the 

material properties in the desired directions. The gradation process of this kind of materials can create 

the industrial products with smooth and continuous properties, hence avoids the stress concentration, 

cracking and delamination phenomena occurred in conventional composites. These striking features 

appeal the researchers in developing the advanced theories and analysis methods to predict more 

precisely the behaviours of FG materials/structures. Furthermore, recent development in technology 

requires the understanding in even micro-/nano-scale structures, which is pushing the research for the 

behaviours of these small scales. There are many approaches analysing the size-dependent behaviours of 

structures including the molecular dynamics simulation, molecular-continuum combinations and non-

classical continuum methods. Among them, the third approach has been utilised expansively due to its 

computational efficiency and the possibility of linking between small- and macro- structures. Within the 

non-classical continuum approach, the modified couple stress theory (MCST), which was developed by 

Yang et al. [1] by modifying the classical couples stress theory [2-5], is advantageous since it requires 

only one additional material length scale parameter together with two from the classical continua. This 

feature was presented by the theoretical framework in [1], which proved that the antisymmetric part of 

curvature does not appear explicitly in the strain energy.  

One of the earliest work on the application of MCST was to analyse the bending behaviour of an epoxy 

cantilever beam by Park and Gao [6] based on Bernoulli-Euler theory, which is widely known as the 

classical beam theory (CBT). Kong et al. [7] compared the variation of natural frequencies of the 

cantilever and simply supported homogeneous beams. Xia et al. [8] studied the static, post-buckling and 

free vibration behaviours of an epoxy beams considering geometric nonlinearity. It is worth noting that 

in the CBT, the cross-section is assumed to be flat and perpendicular to the neutral axis as deformed, 

which actually neglects the shear deformation effect. This results in the stiffer behaviours compared to 

the real working order of structures. The first-order beam theory (FOBT) was then developed to include 

the shear effect in analysing the structural behaviours. Using the FOBT, Ma et al. [9] examined the static 



 3 

and free vibration behaviours of simply supported epoxy beams. Asghari et al. [10] obtained the Navier  

solution for static and vibration behaviours of cantilever FG beams by the CBT and then developed this 

model to the FOBT and von-Karman strain formulation for a simply supported homogeneous beams. 

Using the differential quadrature method, Ke and Wang [11] studied the dynamic stability of FG beams 

under the hinged and clamped supports. Ke et al. [12] also incorporated the geometric nonlinearity effects 

in the free vibration of FG beams. Dehrouyeh-Semnani et al. [13] investigated the free vibration of 

geometrically imperfect FG beams under various BCs based on the Rayleigh-Ritzôs method. Reddy [14] 

examined the static bending, vibration and buckling behaviours of simply supported FG beams using 

both CBT and FOBT, which included the geometric nonlinearity effect. Using Navier solution, Simsek 

et al. [15] studied static bending behaviours of FG beams. Kahrobaiyan et al. [16] developed a FOBT 

beam element and applied to the cantilever FG beams under a concentrated load and a pull-in voltage. 

Thai et al. [17] studied the static, vibration and buckling behaviours of FG sandwich beams without a 

shear correction factor. They computed the transverse shear force and shear stress by using the 

equilibrium equations. Nateghi and Salamat-talab [18] included the thermal effect in analysing the free 

vibration and buckling behaviours of FG beams using both CBT and FOBT. Akgoz and Civalek [19] 

utilised the Rayleigh-Ritz solution to study the free vibration of axially graded tapered beams. In the 

FOBT, the cross-section is still assumed to be flat while loaded, which violates the free shear stress 

conditions at the top and bottom surfaces, and hence a shear correction factor is needed. This leads to the 

proposition of the third-order beam theory (TBT), higher-order beam deformation theories (HOBT) and 

quasi-3D theories. The effectiveness of these theories dealing with macro structures can be found in some 

recent contributions [20-29]. As regarded the micro scales, Nateghi et al. [30] applied the generalized 

differential quadrature method (GDQM) to examine the size-dependent buckling behaviour of FG beams 

using the CBT, FOBT and TBT. Salamat-talab et al. [31] presented an analytical solution for the static 

and free vibration behaviours of simply supported beams. Ansari et al. [32] developed a general strain 

gradient theory using the FOBT, which comprises the MCST, in analysing the bending, vibration and 

buckling of FG beams by applying the GDQM. Sahmani and Ansari [33] also extended the solutions of 
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buckling behaviour for the TBT with the inclusion of the thermal environment effect. Mohammad-Abadi 

and Daneshmehr [34] considered the buckling of FG beams under the CBT, FOBT and TBT. Simsek and 

Reddy [35] analysed bending and vibration behaviours, as well as buckling responses of FG beams with 

the inclusion of elastic Pasternak medium based on various HOBTs. Akgoz and Civalek [36, 37] 

employed a sinusoidal shear deformation to study the static and buckling behaviours, and the thermo-

mechanical buckling of FG beams embedded in Winkler elastic medium under the framework of general 

strain gradient theory. Darijani and Mohammadabadi [38] employed the refined fifth-order shear 

deformation model for static, vibration and buckling behaviours of FG beams. Al-Basyouni et al. [39] 

studied the bending and vibration of FG beams based on the neutral surface position and unified HOBTs. 

Arbind and Reddy [40] proposed nonlinear finite element models based on the CBT and FOBT to analyse 

the bending behaviour of FG beams. Arbind et al. [41] later expanded these models to TBT and included 

the analytical solution to verify the finite element models. Al-Basyouni et al. [39] utilised the neutral 

surface concept to analyse the bending and vibration behaviours of simply supported FG microbeams 

using the CBT, FOBT and sinusoidal beam theory. Trinh et al. [42] analysed static bending, vibration 

and buckling of simply supported beams using various shear deformation theories. A comprehensive 

review on the development of MCST models and other non-classical continua, such as non-local 

elasticity [43-51] and strain gradient [52-54] can be found in recent works by Romano et al. [48] and 

Thai et al. [55].  

Recently, there have been some publications on the BDFG beams, in which the material properties can 

be tailored in both the longitudinal and thickness directions. Lu et al. [56] analysed the bending and 

thermal deformations of BDFG beams using a system of state-space equations on the combination of 

stress and displacement variables. Lezgy-Nazargah [57] studied the fully coupled thermo-mechanical 

static behaviour of BDFG beams using NURBS isogeometric finite element method. Simsek analysed 

the free and force vibration [58] and buckling [59] of BDFG beams under various BCs. Hao and Wei [60] 

studied the dynamic characteristics of BDFG beams using a FOBT model. Utilising the NURBS-based 

isogeometric method, Huynh et al. [61] analysed the free vibration of various types of BDFG beams. 
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Karamanlē [62] studied the bending behaviour of a BDFG beams using different shear deformation 

theories and the symmetric smoothed particle hydrodynamics method. He then expanded this solution 

for BDFG sandwich beams using a quasi-3D theory [63]. However, only few papers investigated the 

small-scale analysis of BDFG beams. Nejad and Hadi [64, 65] analysed bending  and vibration  of BDFG 

nanobeams. Nejad et al. [66] also studied the buckling behaviour of these beams. In their papers, they 

developed the Eringenôs nonlocal theory based on the CBT model with the GDQM. Shafiei and Kazemi 

[67] studied the buckling behaviour of BDFG porous tapered nano-/micro-scale beams using the CBT. 

Shafiei et al. [68] also investigated the vibration of imperfect BDFG porous nano-/micro-beams using 

the FOBT. As far as the authors are aware, there is no study dealing with the BDFG microbeams with 

arbitrary boundary conditions using the HOBT and quasi-3D theories. 

This paper presents a quasi-3D model which includes both the transverse shear and normal deformation 

effects for the free vibration of conventional FG and BDFG microbeams. The state-space method is 

applied to analytically solve the governing equations for natural frequencies and vibration mode shapes 

of microbeams for the first time. The HOBT can be also deduced from the present quasi-3D model as a 

special case by neglecting the normal stretching effect. The effect of material properties, geometric 

parameters and BCs on the free vibration behaviour of conventional and BDFG microbeams are 

discussed.   

2. Theoretical formulation 

2.1. BDFG materials  

Consider a FG microbeam with its dimensions and coordinate shown in Fig. 1a. The typical material 

properties of BDFG microbeams are expressed as: 

( ) () (), xV x
P x z e P z=  (1) 

where ( ),P x z   stands for Youngôs modulus ( ),E x z   or mass density ( ),x zr  . Poissonôs ratio is 

assumed to be constant [58, 61].  The material properties vary exponentially along the axial 

direction describing by 
1

( )
2

x x

x
V x n

a

å õ
= +æ ö
ç ÷

 . ( )P z   is the function governing the variation of 
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material properties across the thickness. Three types of FG beams are considered in this paper 

including: 

Type A: ()( )
1

2

zn

c m m

z
P z P P P

h

å õ
= - + +æ ö

ç ÷
 (2a) 

Type B [58]: () ()
0

zV z
P z Pe= , where 

1
( )

2
z z

z
V z n

h

å õ
= +æ ö
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 (2b) 

Type C [61]: () ()
0
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P z Pe= , where 
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2
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2 if z 0;
2

z

z

z

z h
n

h
V z

z h
n

h

ë è ø
Í -î é ù
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=ì
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 (2c) 

where  and c mP P are the material properties of ceramic and metal, and zn  is the power-law index in Type 

A. For Types B and C, 
0P is the based material properties, whilst 

xn  and zn  are the exponential 

indices in x and z directions, respectively. The variation of Youngôs modulus is illustrated in 

Fig. 1 for conventional FG microbeams ( )0, 2x zn n= = and BDFG microbeams ( )2x zn n= = . 

2.2. Kinematics and constitutive relations 

The displacement field which includes both transverse shear and normal deformation effects is assumed 

as follows [69, 70]: 

( ) ( )
( )

()
( ), ,

, , ,
b sW x t W x t

u x z t U x t z f z
x x

µ µ
= - -

µ µ
 (3a) 

( ) ( ) ( ) () ( ), , , , ,b s zw x z t W x t W x t g z W x t= + +  (3b) 

where , ,  and  b s zU W W W  are the mid-plane displacements of the axial, bending, shear and stretching 

components.  () ()
()3

2

4
 and  1

3

df zz
f z g z

h dz
= = -   are the shape functions of the higher-order and 

stretching displacements. The non-zero strain components related to the above displacement field are 

obtained as: 

()
2 2

2 2

b s
xx

W WU
z f z

x x x
e =

µ µµ
- -

µ µ µ
 (4a) 

()
zz z

g z
W

z
e

µ
=
µ

 (4b) 
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() s z
xz

W W
g z

x x
g

µ µå õ
= +æ ö

µ µç ÷
 (4c) 

The rotation vector is expressed as: 

()
()

1 1 1
  1

2 2 2

b s z
y

f zW W W
curlu g z

x z x x
q

è øµµ µ µ
= =- - + -é ù

µ µ µ µê ú
ye

 (5a) 

0x zq q= =  (5b) 

Hence, the non-zero curvature components are given by: 

()
()

2 2 2

2 2 2

1 1 1
1

2 2 2

yx b s z
xy

f zW W W
g z

y x x z x x

qq
c

ë ûµ è øµµ µ µ µî î
= + = - - + -ì üé ù
µ µ µ µ µ µî îê úí ý

 (6a) 
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 (6b) 

The linear elastic constitutive relations are expressed for the stress and deviatoric part of couple stress 

tensors as: 

11 13
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66
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.
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  (7a) 
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where 
() () () () () ()

( )
0 0 0

11 33 13 662 2
, ,

1 1 2 1

x z x z x zV x V z V x V z V x V z
E e E e E e

Q Q Q Q
u

u u u

+ + +

= = = =
- - +

 , l  is the material length scale 

parameter  [1]. The value of l can be determined from experiments, e.g. 17.6l mm=  for homogeneous 

epoxy beams [54]. By substituting Eqs. (4) and (6) into Eq. (7), the stress and deviatoric part of couple 

stress tensors are rewritten in terms of displacement components as: 
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2.3. Governing equations 

Hamiltonôs principle is employed to obtain the equations of motion: 

( )
2

1

Ʉ 0

t

t

K dtd d- =ñ   (9) 

where Ʉ  and Kd d denote the variation of strain and kinetic energy of the microbeam. The variation of 

the strain energy is written in terms of displacements as:  
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where the stress resultants are expressed as: 

( ) ( )
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The stress resultants can be rewritten as: 
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The variation of the kinetic energy is presented by: 
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where  

( ) ( )()
2

2 2 2

0 1 2 0 1 2 0 2

2

, , , , , , , 1, , , , , , ,

h

h

I I I J J J K K z z g f zf g f z dzr
-

=ñ  (15) 

Substituting Eqs. (10) and (14) into Eq.  (9), integrating by parts and gathering the coefficients of 

, ,  and  b s zU W W Wd d d d , and considering that ()
1

2
x x

x
V x n

a

å õ
= +æ ö
ç ÷

 , the equations of motion can be 

obtained: 
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The essential BCs are expressed as: 

2 2

2 2W :
xyx x x b s

b x xy

Rn M n W W
M R I J

a x a x x x
d w w

µµ µ µ
+ + + = +
µ µ µ µ

 (17a) 

W
: 0d

µ
+ =

µ

b
x xyM R

x
  (17b) 

2 2 2

1 2 2

1 1 1
W :

2 2 2

xy xyx x s b
s x xz yz xy xy

R Sn n W W
P Q X R S J U K J

a x a x x x
d w w w

µ µå õ å õ µ µ
+ - + + + + =- + +æ ö æ ö

µ µ µ µç ÷ ç ÷
 (17c) 
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W 1 1
: 0

2 2

s
x xy xyP R S

x
d
µ

+ + =
µ

  (17d) 

1 1
: 0

2 2

xyx
z xz yz xy

Tn
W Q X T

a x
d

µå õ
- + + =æ ö

µç ÷
  (17e) 

W
: 0z

xyT
x

d
µ

=
µ

  

The governing equations are expressed in terms of displacements as: 

3 3 2 22

11 11 11 13 11 11 11 132 3 3 2 2

s sb s x b sz
z

W W n W WWU U
A B B K A B B K W

x x x x a x x x

å õ å õµ µ µ µµµ µ
- - + + - - +æ ö æ ö

µ µ µ µ µ µ µç ÷ ç ÷
  

2 2 2

0 1 1
b sW W

I U I J
x x

w w w
µ µ

=- + +
µ µ

  (18a) 

4 4 3 323 2

11 11 11 13 11 11 11 133 4 4 2 2 3 3
2s sb s x b sz z

W W n W WW WU U
B D D L B D D L

x x x x a x x x x

å õµ µ µ µµ µµ µ
- - + + - - +æ ö

µ µ µ µ µ µ µ µç ÷
 

2 2 2

11 11 11 132 2

sx b s
z

n W WU
B D D L W

a x x x

å õµ µµå õ
+ - - +æ öæ ö

µ µ µç ÷ç ÷
   

( ) ( )
4 4 3 34 3

4 4 4 3 3 3

1 1 1 1
2

2 2 2 2

b s x b sz z
m m m m m m m m

W W n W WW W
A A B E A A B E

x x x a x x x

å õµ µ µ µµ µ
- - + - + - - + -æ ö

µ µ µ µ µ µç ÷
  

( )
2 2 2 2

2 2 2

1 1

2 2

x b s z
m m m m

n W W W
A A B E

a x x x

å õµ µ µå õ
+ - - + -æ öæ ö

µ µ µç ÷ç ÷
  

( )2 2 2 2 2

0 0 0 1 1
x

b s z

n U
I W I W J W I U I

a x
w w w w w

µå õ
= - - - + - -æ ö

µç ÷
   

2 2
2 2 2 2

2 2 2 22 2

x b b x s sn W W n W W
I I J J

a x x a x x
w w w w

å õ å õµ µ µ µ
+ + + +æ ö æ ö

µ µ µ µç ÷ ç ÷
  (18b) 

4 4 3 323 2

11 11 11 13 11 11 11 133 4 4 2 2 3 3
2s s s s s sb s x b sz z

W W n W WW WU U
B D H L B D H L

x x x x a x x x x

å õµ µ µ µµ µµ µ
- - + + - - +æ ö

µ µ µ µ µ µ µ µç ÷
 

2 2 2 2 2

11 11 11 13 55 552 2 2 2

s s s s sx b s s x sz z
z

n W W W n WW WU
B D H L W A A

a x x x x x a x x

å õ å õµ µ µ µµ µµå õ å õ
+ - - + + + + +æ ö æ öæ ö æ ö

µ µ µ µ µ µ µç ÷ ç ÷ç ÷ ç ÷
  

( ) ( )

( )

4 4 3 34 3

4 4 4 3 3 3

2 2 2 2

2 2 2

1 1 1 1
2

2 2 2 21

2 1 1

2 2

b s x b sz z
m m m m m m m m

x b s z
m m m m

W W n W WW W
A A B E A A B E

x x x a x x x

n W W W
A A B E

a x x x

ë ûè øµ µ µ µµ µ
- - + - + - - + -î îé ù

µ µ µ µ µ µê úî î
+ ì ü

è øµ µ µå õî î
+ - - + -é ùæ öî îµ µ µç ÷ê úí ý
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( ) ( )

( )

4 4 3 34 3

4 4 4 3 3 3

2 2 2 2

2 2 2

1 1 1 1
2

2 2 2 21

2 1 1

2 2

b s x b sz z
m m m m m m m m

x b s z
m m m m

W W n W WW W
B B C D B B C D

x x x a x x x

n W W W
B B C D

a x x x

ë ûè øµ µ µ µµ µ
- - + - + - - + -î îé ù

µ µ µ µ µ µê úî î
+ ì ü

è øµ µ µå õî î
+ - - + -é ùæ öî îµ µ µç ÷ê úí ý

  

2 2

2 2

1

4

s x sz z
m

W n WW W
H

x x a x x

è øå õµ µµ µå õ
+ - + -é ùæ ö æ ö

µ µ µ µç ÷ç ÷ê ú

  

( )
2 2

2 2 2 2 2

1 0 0 2 22 2

x x s s x b b
b s z

n n W W n W WU
J U I W W J W K J

a x a x x a x x
w w w w w

å õ å õµ µ µ µµå õ
=- + - + - + + + +æ ö æ öæ ö

µ µ µ µ µç ÷ ç ÷ ç ÷
(18c)  

2 2 2 2

13 13 13 33 55 552 2 2 2

s s sb s s x sz z
z

W W W n WW WU
K L L Z W A A

x x x x x a x x

å õµ µ µ µµ µµ å õ
- + + - + + + +æ ö æ ö

µ µ µ µ µ µ µç ÷ç ÷
 

2 2

2 2

1

2

s x sz z
m

W n WW W
H

x x a x x

è øµ µµ µå õ
+ - + -é ùæ ö

µ µ µ µç ÷ê ú
  

( ) ( )

( )

4 4 3 34 3

4 4 4 3 3 3

2 2 2 2

2 2 2

1 1 1 1
2

2 2 2 21

2 1 1

2 2

b s x b sz z
m m m m m m m m

x b s z
m m m m

W W n W WW W
E E D F E E D F

x x x a x x x

n W W W
E E D F

a x x x

ë ûè øµ µ µ µµ µ
- - + - + - - + -î îé ù

µ µ µ µ µ µê úî î
+ ì ü

è øµ µ µå õî î
+ - - + -é ùæ öî îµ µ µç ÷ê úí ý

  

( )2 2

0 0b s zJ W W K Ww w=- + -   (18d) 

Using the state-space concept, the highest order derivatives of displacements are expressed in terms of 

other components as: 

2 3 2 32

1 2 3 4 5 6 7 8 9 102 2 3 2 3

b b s s z
z

b sW W W W WU U
aU a a a a a a a a W a

x x x x x x

W W

x xx

µ µ µ µ µµ µ
= + + + + + + + + +

µ µ

µµ µ µ µµµ µ µ
 (19a) 

4 2 3

1 2 3 4 5 64 2 3

b b b b
b

W W W WU
rU r rW r r r

x x x x x

µ µ µ µµ
= + + + + +

µ µ µ µ µ
 

2 3 2 3

7 8 9 10 11 12 13 142 3 2 3

s s s z z z
s z

W W W W W W
rW r r r r W r r r

x x x x x x

µ µ µ µ µ µ
+ + + + + + + +

µ µ µ µ µ µ
 (19b) 

4 2 3

1 2 3 4 5 64 2 3

s b b b
b

W W W WU
sU s s W s s s

x x x x x

µ µ µ µµ
= + + + + +

µ µ µ µ µ
 

2 3 2 3

7 8 9 10 11 12 13 142 3 2 3

s s s z z z
s z

W W W W W W
s W s s s s W s s s

x x x x x x

µ µ µ µ µ µ
+ + + + + + + +

µ µ µ µ µ µ
 (19c) 

2 34

1 2 3 4 5 64 2 3

b b bz
b

W W WW U
t U t t W t t t

x x x x x

µ µ µµ µ
= + + + + +

µ µ µ µ µ
 

2 3 2 3

7 8 9 10 11 12 13 142 3 2 3

s s s z z z
s z

W W W W W W
t W t t t t W t t t

x x x x x x

µ µ µ µ µ µ
+ + + + + + + +

µ µ µ µ µ µ
 (19d) 

The coefficients in Eq. (19) are given in the Appendix. The systems of Eq. (19) can be converted into a 
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matrix form using state-space approach as:  

( )
( )

x
x

x

µ
=

µ

U
TU    (20) 

where the vector of variables is 

 

'
2 3 2 3 2 3

2 3 2 3 2 3
( ) , , , , , , , , , , , , ,b b b s s s z z z

b s z

W W W W W W W W WU
x U W W W

x x x x x x x x x x

ë ûµ µ µ µ µ µ µ µ µµ
=ì ü

µ µ µ µ µ µ µ µ µ µí ý
U ;  (21) 

and the non-zero components of matrix T are defined as: 

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

a a a a a a a a a a

r r r r r r r r r r r r r r

s s s s s s s s s s s s s s

=T

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

t t t t t t t t t t t t t t

è ø
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
ê ú

  (22) 

A formal solution of Eq. (20) is given by: 

( )x = Tx
U e K  (23) 

where K  is a vector which can be solved from the BCs at / 2x a=°  and 
Tx

e  is of the form: 

1

14

1

0

0

x

x

e

e

l

l

-

è ø
é ù

= é ù
é ù
ê ú

Tx
e E E  (24) 

whereɚ and E are the eigenvalues and columns of eigenvectors, respectively, associated with matrix

T. The BCs expressed in terms of displacement variables are described by: 
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Clamped (C): 0b s z
b s z

W W W
U W W W

x x x

µ µ µ
= = = = = = =

µ µ µ
  (25a) 

Simply supported (S): 

b sU W W= =  

( ) ( )
2 2 2

11 11 11 132 2 2

1 1

2 2

sb s z
m m m z m

W W WU
B D A D A B L W E

x x x x

µ µ µµ è ø
= - + - + + + -é ùµ µ µ µê ú

  

( ) ( ) ( )
2 2 2

11 11 11 132 2 2

1 1 1
2

2 4 4

s s sb s z
m m m m m z m m

W W WU
B D A B H A B C L W E D

x x x x

µ µ µµ è ø è ø
= - + + - + + + + - +é ù é ùµ µ µ µê ú ê ú

  

( )
2 2 2

2 2 2

1 1
0

2 2

b s z
m m m m

W W W
E E D F

x x x

µ µ µ
= + + + =

µ µ µ
  (25b) 

Free (F):  

2 2

11 11 11 132 2

sb s
z

W WU
A B B K W

x x x

µ µµ
- - +

µ µ µ
  

11 1 11 2
xn U

B aU B a
a x

µå õ
= + +æ ö

µç ÷
  

( ) ( )
2 3

2

11 3 2 11 4 11 11 5 112 3

b x x b b
m m

W n n W W
B a I B a D A B a D A

x a a x x
w

è øµ µ µå õ
è ø+ - + - - + - -æ öé ù ê úµ µ µç ÷ê ú

  

( ) ( ) ( ) ( )
2 3

2

11 6 2 11 7 11 11 8 112 3

1 1

2 2

s ss x x s s
m m m m

W n n W W
B a J B a D A B B a D A B

x a a x x
w

è øµ µ µå õ è ø
+ - + - - + + - - +æ öé ù é ùµ µ µê úç ÷ê ú

  

( )
2 3

11 9 13 11 10 13 2 3

1 1

2 2

x xz z z
z m m

n nW W W
B a L W B a L E E

a x a x x

µ µ µå õ
+ + + + - -æ ö

µ µ µç ÷
  

( ) ( )
2 2 2

11 11 11 132 2 2

1 1

2 2

sb s z
m m m z m

W W WU
B D A D A B L W E

x x x x

µ µ µµ è ø
= - + - + + + -é ùµ µ µ µê ú

  

( ) ( )
2 3

2 2

1 11 2 11 2 3

1 1

2 2

s sb x b b
m m m m

W n W WU
J U B J D A B A B

x x a x x
w w

µ µ µµ å õ
= + - - + + - +æ ö

µ µ µ µç ÷
  

( ) ( )
2 3

2

55 2 11 2 3

1 1 1
2 2

4 4 4

s s x s s
m m m m m m m

W n W W
A H K H A B C A B C

x a x x
w
µ µ µè øå õ

+ + - - + + + - + +æ ö é ùµ µ µç ÷ ê ú
  

( ) ( )
2 3

13 55 2 3

1 1 1

4 4 4

s s xz z z
z m m m m m

nW W W
L W A H E D E D

x a x x

µ µ µå õ
+ + - - + - +æ ö

µ µ µç ÷
  

( ) ( ) ( )
2 2 2

11 11 11 132 2 2

1 1 1
2

2 4 4

s s sb s z
m m m m m z m m

W W WU
B D A B H A B C L W E D

x x x x

µ µ µµ è ø è ø
= - + + - + + + + - +é ù é ùµ µ µ µê ú ê ú
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( ) ( )
2 3 2 3

552 3 2 3

1 1 1 1 1

2 2 4 4 4

sx b b s x s s
m m m m m m m

n W W W n W W
E E A H E D E D

a x x x a x x

µ µ µ µ µå õ
=- - + + - + - +æ ö

µ µ µ µ µç ÷
  

2 3

55 2 3

1 1 1

4 4 4

s xz z z
m m m

nW W W
A H F F

x a x x

µ µ µå õ
+ - - -æ ö

µ µ µç ÷
  

( )
2 2 2

2 2 2

1 1
0

2 2

b s z
m m m m

W W W
E E D F

x x x

µ µ µ
= + + + =

µ µ µ
  (25c) 

By substituting Eq. (23) into Eq. (25) with the required BCs, a system of equations is obtained as:  

=Tx
Ŭe K 0  (26) 

where Ŭ  comes from the coefficients in Eq. (25) for the appropriate BCs at 2x a=°  . The natural 

frequencies 
nw of the nth mode of vibration can be obtained by setting 0=Tx

Ŭe . It is noticeable that the 

iteration procedure [71] is used in this paper to calculate the natural frequencies. The mode shapes are 

plotted by solving for K  from Eq. (26) based on the singular value decomposition, and calculating the 

displacement components along the beams thereafter.  

4. Numerical results and discussion 

In this session, the numerical examples are presented to investigate the size-dependent vibration 

behaviours of conventional FG and BDFG microbeams using the HOBT and quasi-3D theory. In the first 

part, the natural frequencies of conventional FG microbeams (Type A) under arbitrary BCs are analysed. 

The beams are made of SiC ( )3427 , 3100 , 0.17c c cE GPa kg mr u= = =   and Al

( )370 , 2702 , 0.3m m mE GPa kg mr u= = =  . The non-dimensional natural frequencies are defined as 

follows: 
2

m

m

a

h E

rw
W=   and 10

110

Ia

h A

w
W=   with 

2

10 2

2
1

h

m

mh

E
I

u
-

=
-ñ
  and 

2

110

2

h

m

h

A r
-

=ñ  . The second part 

deals with the free vibration response of BDFG microbeams (Types B and C). The base material 

properties in BDFG microbeams are  3

0 0 0210 , 7850  and 0.3E GPa kg mr u= = =. The following non-

dimensional natural frequency 
2

0

0

Ĕ a

h E

rw
W=   is used. Since the BDFG beams are not horizontally 

symmetric as discussed later, it is useful to clarify that the two letters, e.g. C-S, are used to describe the 

BCs at the left and right ends of the beam, respectively. 
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4.1. Conventional FG microbeams 

The natural frequencies of SiC/Al microbeams under various thickness-to-material length scale ratios are 

given in Table 1. The obtained solutions for the C-C and S-S microbeams agree well with those based on 

the FOBT [12] and HOBT [72]. The effect of BCs on the natural frequencies is also highlighted in this 

table. It can be seen that the highest frequencies are seen in C-C beams and followed by C-S, F-S, S-S 

and C-F beams as expected. It is worth noting that the Poisson effect is included in both thickness and 

longitudinal directions, and the Mori-Tanaka scheme is used in this table. The corresponding formula can 

be found in [12, 32, 42]. Further to the C-C microbeams, the difference between the vibration mode 

shapes predicted by the HOBT and quasi-3D theory is revealed in Fig. 2 for the first three modes. It can 

be seen that the stretching effect is more noticeable for the thick beams and the higher modes. In addition, 

the axial mode appears in the second mode instead of the third mode as in the case of macrobeams as 

observed in Ref. [73]. 

Table 2 and Fig. 3 examine the effect of the power-law index and the BCs in both FG micro- and macro- 

beams. As expected, the natural frequencies gradually decrease with a reduction of ceramic volume 

fraction, which results in a lower Youngôs modulus. For simply supported beams, unlike the Navier 

solution [42], the present approach can be employed to adapt the requirements of both displacement and 

stress resultants. Therefore, it is applicable to both immovable (S1) and movable (S2) simply supported 

BCs. Using these two BCs (S1-S1 and S1-S2), the difference between the natural frequencies and the first 

three mode shapes for microbeams ( )2zn =  is shown in Table 2 and Fig. 4. These two BCs only result 

in the identical frequencies for the homogeneous beam ( )0zn =  as expected, whereas the S1-S1 BC leads 

to the higher values for the FG beams. The difference is more apparent in the higher modes, where the 

axial modes appear in the movable simply supported beams with quite low frequencies. In the rest of this 

paper, the movable simply support is combined with other end conditions, except for the free end that 

joins with the immovable one. The simply supported beams are assembled by an immovable support at 

2x a=-  and a movable one at 2x a= . Comparing various BCs, the higher frequencies are observed in 

the beams with stiffer ends, i.e. C-C, and with a higher volume of ceramic (smaller 
zn ). It is interesting 
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that the fundamental frequencies of the S-F beams are nearly the same with those of C-S beams for both 

micro and macroscales. 

The difference between the vibration behaviour of macro and microbeams is also seen in the mode shapes. 

Fig. 5 demonstrates the variation of the vibration mode shapes with respect to the change of the 

frequencies. These graphs can be used to state the mode shapes where the change of the number of half-

sine waves occurs. As can be seen from this figure, for C-C and F-C beams, there is a significant change 

between the vibration mode shapes in the macrobeams. However, in the microbeams, they are not too 

prominent to the neighbour status.       

4.2. BDFG beams 

Tables 3-6 reveal the fundamental frequencies of BDFG beams (Types B and C) with respect to different 

BCs, exponential indices and thickness-to-material length scales. The current results for macrobeams 

( /h l=¤) agree well with those given by Simsek [58]. The natural frequencies of Types B and C are 

identical for the conventional FG beam ( )0zn = , but they are different for BDFG beams. The lower 

frequencies are observed with the elevated 
zn , but the change is more significant from the symmetric 

cross-section beams, i.e. Type C. This correlation is also presented in Fig. 6, which illustrates the effect 

of axial and through-the-thickness exponential indices to the natural frequencies of BDFG microbeams 

under various BCs. It is seen that the increase of 
zn  leads to a reduction in frequencies in all cases, 

whereas the increase of 
xn  only leads to a reduction in frequencies of C-S, S-S and C-F beams.  In order 

to illustrate solely the effect of material properties in each direction, Fig. 7 plots the relationship between 

the natural frequencies and thickness-to-material length scales for the axial and through-the-thickness 

FG beams. In both cases, the effect of couple stress is negligible as the thickness is greater than30l. For 

the conventional FG beams, the natural frequencies are lower in Type C, while they are identical in the 

axial FG beams as expected.  

As mentioned before that the BDFG beams are not horizontally symmetric which means that the 

switching of the left and right BCs, e.g. C-F and F-C, changes the natural frequencies and vibration mode 

shapes. An example of switching C-F and C-S BCs is demonstrated in Fig. 8. In both cases, the left 
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clamped ends cause lower frequency with the elevated 
xn , which is opposite to the right clamped ends 

do. Indeed, the increase of 
xn  results in an increase of not only Youngôs modulus but also the density. 

When the clamps are placed at the stiffer and heavier ends (the right ends), the natural frequencies are 

maximised. Finally, the effect of 
xn  in the mode shapes of several BCs is revealed in Fig. 9 with 

zn  equal 

to 2. For the C-C beams, the mode shapes are not symmetric for non-zero 
xn , where the maximum modal 

displacement is seen on the left half. For the F-C beams, in which the maximum displacement occurs at 

the tip, the small relative magitudes are seen on other points. In addition, the second mode is the flexural 

mode for through-the-thickness FG beams ( )0xn = ; however, the axial one for BDFG beams ( )0xn ¸ . 

5. Conclusions 

In this paper, state-space based solutions are presented for the free vibration behaviour of conventional 

and BDFG microbeams under arbitrary boundary conditions. Based on the Hamiltonôs principle and the 

modified couple stress theory, the governing equations of motion are developed for the quasi-3D theory. 

The natural frequencies are obtained via an iteration procedure and the corresponding mode shapes are 

outlined by the singular value decomposition. It is concluded that both the natural frequencies and mode 

shapes are significantly different between macro and microbeams, emphasizing the need of employing 

the non-classical continua for small-scale structures. The inclusion of the size effect results in a 

considerable increase in the bending stiffness and the switching between flexural and axial modes. It is 

also worth noting that due to the asymmetric along the length, the employing of BCs in analysing the 

BDFG beams needs to perform with the clarification of the left and right ends.   
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Appendix 

The coefficients in Eq. (19): 
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Figure Captions 

Fig. 1: Coordinate and variation of Youngôs modulus in BDFG beams. 

Fig. 2: Vibration mode shapes of SiC/Al microbeams ( ), 5, 2, 2zC C a h h l n- = = = using HOBT and 

quasi-3D theory. 

Fig. 3: Variation of natural frequencies W with respect to the power-law index 
zn

( )SiC/Al beams, 5,  2a h h l= =
. 

Fig. 4: Vibration mode shapes of immovable and movable simply supported SiC/Al microbeams 

( )5, 2, 2za h n h l= = =. 

Fig. 5: Variation of mode shapes with respect to the frequencies W (SiC/Al beams, 10,  2za h n= =). 

Fig. 6: Variation of fundamental frequencies of BDFG micro-beams ( )20, 2a h h l= =  with respect to 

exponential-indices. 

Fig. 7: Difference between Type B and Type C in BDFG beams ( )5a h= . 

Fig. 8: Effect of the left and right ends to the frequencies of BDFG beams ( )5, 1za h n= = . 

Fig. 9: Effect of the axial exponential index to the vibration mode shapes of BDFG beams 

( )5, 2, 2za h h l n= = =. 
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Table Captions 

Table 1: Comparisons of non-dimensional natural frequencies W of SiC/Al microbeams for various h/l 

( )12, 2za h n= = . 

Table 2: Size effect of frequencies W for the SiC/Al beams under various BCs and slenderness ratios. 

Table 3: Fundamental frequencies of C-C BDFG beams ( )5a h= . 

Table 4: Fundamental frequencies of C-S BDFG beams ( )5a h= . 

Table 5: Fundamental frequencies of S-S BDFG beams ( )5a h= . 

Table 6: Fundamental frequencies of C-F BDFG beams ( )5a h= . 
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a. Type A ( )0, 2x zn n= =  

 

b. Type B ( )2, 2x zn n= =  

 

c. Type C ( )2, 2x zn n= =  

Fig. 1: Coordinate and variation of Youngôs modulus in BDFG beams. 
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Mode 1: 
1 13.2810W =    Mode 1: 

1 13.3446W =  

   

Mode 2: 
2 25.1587W =    Mode 2: 

2 25.8440W =  

   

Mode 3: 
3 33.6027W =    Mode 3: 

3 33.6035W =  

a. HOBT     b. Quasi-3D 

Fig. 2: Vibration mode shapes of SiC/Al microbeams ( ), 5, 2, 2zC C a h h l n- = = = using HOBT and 

quasi-3D theory. 
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Fig. 3: Variation of natural frequencies W with respect to the power-law index 
zn

( )SiC/Al beams, 5,  2a h h l= =
. 
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  Mode 1: 
1 7.3804W =      Mode 1: 

1 6.0555W =  

  

Mode 2: 
2 18.8083W =      Mode 2: 

2 12.4521W =  

  

Mode 3: 3 29.2417W =      Mode 3: 3 23.1669W =  

a. Immovable SS beams    b. Movable SS beams 

Fig. 4: Vibration mode shapes of immovable and movable simply supported SiC/Al microbeams 

( )5, 2, 2za h n h l= = =. 
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/h l=¤     h=l 

a. C-C beams 

 

   

/h l=¤     h=l 

b. F-C beams 

Fig. 5: Variation of mode shapes with respect to the frequencies W (SiC/Al beams,10,  2za h n= =). 

  






















